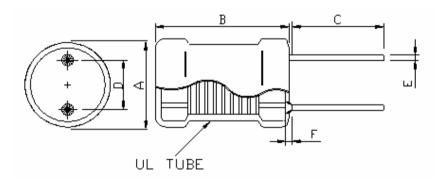
T. SCOPE:


This specification applies to the current type Radial Leaded Inductor for MCD-0406S-SERIES(U)

PRODUCT INDENTIFICATION

MCD - 0406S - 101 M U

- 1
- 2
- 345
- ① Product Code
- 2 Dimensions Code
- **3 Inductance Code**
- **4** Tolerance Code
- **⑤ UL Tube**

(1) SHAPES AND DIMENSIONS

A: 5.5Max. mm

B: 8.0Max. mm

C: 15.0±2.0 mm

D: 2.0±0.5 mm

E: φ0.5±0.1 mm

F: 2.0Max. mm

(2) ELECTRICAL SPECIFICATIONS SEE TABLE 1

TEST INSTRUMENTS

L: HP 4284A PRECISION LCR METER (or equivalent)

RDC: CHROMA MODEL 16502 MILLIOHMMETER (or equivalent)

(3) CHARACTERISTICS

(3)-1 Operate temperature range $-40^{\circ}\text{C} \sim +125^{\circ}\text{C}$ (Including self temp. rise)

(3)-2 Storage temperature range -40° C $\sim +105^{\circ}$ C

TABLE 1

MAGLAYERS	Inductance	Percent	Test	Resistance	Rated Do	C Current
PT/NO.	L(µH)	Tolerance	Frequency	RDC(Ω)Max.	Isat(A)	Irms(A)
MCD-0406S-1R0⊡U	1.0	M,N	100kHz/0.25V	12.6m	5.20	4.70
MCD-0406S-1R5⊡U	1.5	M,N	100kHz/0.25V	16.4m	4.30	4.50
MCD-0406S-2R2⊡U	2.2	M,N	100kHz/0.25V	22.8m	3.50	3.80
MCD-0406S-3R3⊡U	3.3	M,N	100kHz/0.25V	30.1m	2.60	3.00
MCD-0406S-4R7⊡U	4.7	М	100kHz/0.25V	47.1m	2.20	2.00
MCD-0406S-470⊡U	47	K,M	100kHz/0.25V	0.320	0.67	0.75
MCD-0406S-101⊡U	100	K,M	100kHz/0.25V	1.105	0.46	0.55
MCD-0406S-221⊡U	220	K,M	100kHz/0.25V	1.416	0.27	0.35
MCD-0406S-271□U	270	K,M	100kHz/0.25V	1.800	0.25	0.30
MCD-0406S-471□U	470	K,M	100kHz/0.25V	3.4	0.20	0.25
MCD-0406S-661□U	660	K,M	100kHz/0.25V	4.3	0.19	0.22
MCD-0406S-102⊡U	1000	K,M	100kHz/0.25V	7.0	0.15	0.17
MCD-0406S-182⊡U	1800	K,M	10kHz/0.25V	11.0	0.12	0.14
MCD-0406S-222⊡U	2200	K,M	10kHz/0.25V	12.5	0.11	0.13
MCD-0406S-272⊡U	2700	K,M	10kHz/0.25V	14.3	0.10	0.12
MCD-0406S-302⊡U	3000	K,M	10kHz/0.25V	15.3	0.09	0.11
MCD-0406S-332⊡U	3300	K,M	10kHz/0.25V	19.5	0.09	0.10
MCD-0406S-392⊡U	3900	K,M	10kHz/0.25V	21.1	0.08	0.10
MCD-0406S-562⊡U	5600	K,M	10kHz/0.25V	32.0	0.07	0.09

 $X \subseteq S$ specify the inductance tolerance , K(±10%) , M(±20%) , N(±30%)

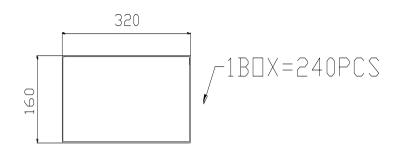
Irms: Based on temperature rise ($\triangle T: 40^{\circ}C$ TYP.)

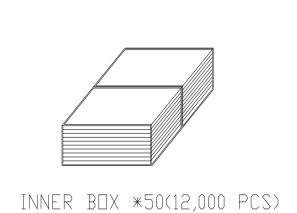
Rated DC Current: The less value which is lsat or Irms.

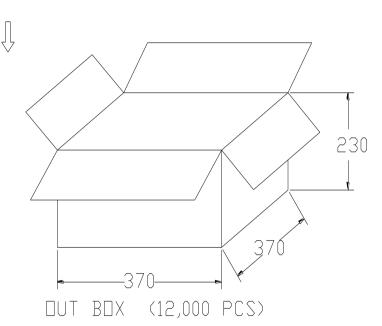
[※] Isat : Based on inductance change (△L/Lo : drop 10% Max.) @ ambient temp. 25℃

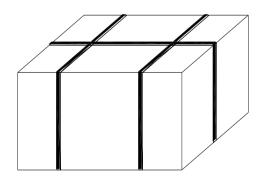
(4) RELIABILITY TEST METHOD

MECHANICAL


NO.	ITEMS	SPECIFICATIONS	CONDITIONS
1	Solderability test	More than 90% of the termnial electrode should be covered with solder.	Dipping: 245 \pm 5 $^{\circ}$ C, 3 \pm 1 seconds
2	lead tensile	1.0 Kg MIN.	The lead of product is pulled with a load of
	strength test		1.0kg mininum until lead breakdown. The tensile
			force shall be recorded.
3	Vibration test	∆L/L≦±7%	The product is fixed ento the vibration with
		Visual:OK	amplitude of 1.52m/m at a frequency of 10∼55Hz
			sweeping for Imin. The vibration is done at X,Y,
			Z direction respectively for 2 houes, totally 6
			hours.
4	Soldering heat	Visual:OK	The leads of product are dipped into a solder pot
	resistance test	Circuit:OK	of 260±5℃ for a duration of 10±1sec. Nothing
			particular on visual and open circuitry as a
			result of ore testing.


ENVIRONMENTAL


NO.	ITEMS	SPECIFICATIONS	CONDITIONS
1	Humidity	<u></u> _L/L≦±5%	The product is placed in a chamber of 40±2℃,
	endurance		90 \sim 95%RH for 96 hours. Measurement is done
	test		after the reaovery of $4{\sim}24$ hours.
2	High temp	∆L/L≦±5%	The product is placed in a chamber of 125±2℃,
	endurance test		for 72 hours. Measurement is done after recovery
			of 4~24 hours.
3	Low temp test		The product is placed in a chamber of -40±2℃,
			for 96 hours. Measurement is done after
			recovery of 4~24 hours.
4	Thermal shock		The specimens are placed in a chamber and the
	test		temp is then lowered to -40±2℃ for one hour.
			The temp will raised to +125±2℃ for one hour.
			This constitues one cycle. Ten cycles of such
			testing shall be completed. Measurement is made
			after recovery for 4∼24 hours from the
			completion of testing.


(5) PACKAGE SPECIFICATION (mm)

Please note that the contents may change without any prior notice due to reasons such as upgrading.

